Search results for "Isolated point"
showing 5 items of 5 documents
Fréchet Spaces of Holomorphic Functions without Copies of l 1
1996
Let X be a Banach space. Let Hw*(X*) the Frechet space whose elements are the holomorphic functions defined on X* whose restrictions to each multiple mB(X*), m = 1,2, …, of the closed unit ball B(X*) of X* are continuous for the weak-star topology. A fundamental system of norms for this space is the supremum of the absolute value of each element of Hw*(X*) in mB(X*), m = 1,2,…. In this paper we construct the bidual of l1 when this space contains no copy of l1. We also show that if X is an Asplund space, then Hw*(X*) can be represented as the projective limit of a sequence of Banach spaces that are Asplund.
Fixed point theory in partial metric spaces via φ-fixed point’s concept in metric spaces
2014
Abstract Let X be a non-empty set. We say that an element x ∈ X is a φ-fixed point of T, where φ : X → [ 0 , ∞ ) and T : X → X , if x is a fixed point of T and φ ( x ) = 0 . In this paper, we establish some existence results of φ-fixed points for various classes of operators in the case, where X is endowed with a metric d. The obtained results are used to deduce some fixed point theorems in the case where X is endowed with a partial metric p. MSC:54H25, 47H10.
Proper 1-ball contractive retractions in Banach spaces of measurable functions
2005
In this paper we consider the Wosko problem of evaluating, in an infinite-dimensional Banach space X, the infimum of all k > 1 for which there exists a k-ball contractive retraction of the unit ball onto its boundary. We prove that in some classical Banach spaces the best possible value 1 is attained. Moreover we give estimates of the lower H-measure of noncompactness of the retractions we construct. 1. Introduction Let X be an infinite-dimensional Banach space with unit closed ball B(X) and unit sphere S(X). It is well known that, in this setting, there is a retraction of B(X) onto S(X), that is, a continuous mapping R : B(X) ! S(X) with Rx = x for all x 2 S(X). In (4) Benyamini and Sternf…
Stability of the fixed point property in Hilbert spaces
2005
In this paper we prove that if X X is a Banach space whose Banach-Mazur distance to a Hilbert space is less than 5 + 17 2 \sqrt {\frac {5+\sqrt {17}}{2}} , then X X has the fixed point property for nonexpansive mappings.
Weyl Type Theorems for Left and Right Polaroid Operators
2010
A bounded operator defined on a Banach space is said to be polaroid if every isolated point of the spectrum is a pole of the resolvent. In this paper we consider the two related notions of left and right polaroid, and explore them together with the condition of being a-polaroid. Moreover, the equivalences of Weyl type theorems and generalized Weyl type theorems are investigated for left and a-polaroid operators. As a consequence, we obtain a general framework which allows us to derive in a unified way many recent results, concerning Weyl type theorems (generalized or not) for important classes of operators.